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H Y D R O D Y N A M I C  C H A R A C T E R I S T I C S  O F  A W I N G  

IN A S T R A T I F I E D  F L U I D  N E A R  T H E  B O T T O M  

L. A. Tkacheva  UDC 516.6 

The problem of the motion of a thin wing in a stratified fluid near the bottom is considered. A 
solution is found using the logarithmic dynamic potential. The dependence of  the hydrodynamic 
force and moment on the input parameters, namely, the Strouhal and Froude numbers and the 
distance to the bottom, is studied. An important feature of the amplitudes of nonstationary 
loads on the wing is their nonmonotonic character in the case where the frequency of vibrations 
is lower than the Brunt-Viiisiilii frequency, which is explained by the interaction between the 
wing's vibrations and the internal waves reflected from the bottom. 

The effect of the bo t tom on the hydrodynamic characteristics of a wing in a uniform fluid has been 
investigated in many studies. Basin and Shadrin [1] summarized the results obtained. The  author considered 
the unsteady motion of a wing and the force acting on it in a uniformly stratified unbounded fluid [2, 3]. In 
the present paper, the unsteady hydrodynamic characteristics of a wing in a stratified fluid near the bottom 
are analyzed. 

1. As in [2], we shall model a wing by an infinitely thin plate of length 2c (c is the half-chord of the 
wing) located a distance h from the bottom. We introduce the Cartesian coordinate system (x, y), directing 
the z axis along the bot tom.  The  wing moves horizontally at a constant velocity V. At the moment  t = 0. 
the projection of the wing onto the Oz axis occupies the segment [ -c ,  c] (Fig. 1). At this moment  the wing 
begins to undergo small vibrations in the transverse direction in accordance with a specified law: 

v2(x,t) = f ( x , t ) ,  (1.1) 

where v = (Vl, v2) is the velocity. 
The stratification is assumed to be weak and exponential in character: 

po(y) = p, exp (-/~y), /3 = const. 

It is also assumed that  the dimensions of the wing are small compared with the characteristic dimension of the 
stratification, i.e., c/~ << 1. According to these assumptions, it is possible to use the Boussinesq approximation. 
As a result, for the s tream function ~b(x, t) Ix = (x, y)] we obtain the Sobolev equation 

02Ar 02r 
Ot--~ Y- + w 2 -~ffx2 = O, (1.2) 

where ~o0 2 = -gP'o/Po is the Brunt-V/~iss frequency. 
Thus, the liquid motion satisfies Eq. (1.2) outside the wing and the wake for t > 0, the initiat conditions 

r  0) = C , (x ,0 )  = 0, (1.3) 

and the following boundary conditions: the condition of nonflow on the wing (1.1) and at the bot tom 

v2(z, 0, t) = 0, 
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Fig. 1. Wing near the bottom. 

the conditions in the wake 

[v2] = [p] = 0, (1.4) 

and the Kutta-Joukowski conditions at the trailing edge. Here the square brackets denote the difference in 
the corresponding quantities above and below the contour. In addition, the function r t) should be subject 
to the regularity conditions at infinity IVr = O(r-2), r = ~ l ~ +  y2 (r -* c~) and at the leading edge 
IVr = O(r-(8) (0 < 6 < 1), where rl is the distance to the leading edge. 

2. We use the reflection method and extend the function r t) to the lower half-plane in an odd 
manner. We seek the stream function in the form of a logarithmic dynamic potential [2-4]. Changing over to 
the coordinate system x ~, y~ attached to the wing 

x = x I + Vt, Y = yl, 

we obtain for the stream function ~ ' (x  ~,t) = r  + Vtel, t) the representation (henceforth, the primes are 
omitted) 

t 

1 [1 __ COS (Oj0(e __ O.) y - h  ~(x, e )=  / v(~,e) In I x -  y(~)ld~ + f do" / u (~ ,o . ) t - - - a  [x + V ( e -  ~ 1 -  Y(~)I)] d~ 
! t 0 1r 

t 

1 [l __ cos (w0 (t __ o. ) y + h  - / v ( ~ , e ) l n l x - y ( ~ ) l d  ~ -  / d o . f v ( ~ , o . ) ~  iX + V(e_o")e l_y(~) l ) ]d~ .  (2.1) 
l~ 0 e 

Here It - I0 + lit is the contour of the original wing 10 = ( -c ,  c) and the wake l i t = ( - c -  V t , - c )  at the 
moment of time t, II is the reflected contour, v(Ge) is the density of the potential, and el is the unit vector 
along the x axis. The following relations, which relate the density of the potential in the wake and the density 
on the wing: 

v(Gt) = 7( t  + ~-~ )Jo (wo  ~ - ~ )  +h(Ge) ,~Elxt  (2.2) 

were derived in [2] from the Kutta-Joukowski conditions and (1.3). Here the function 7(e) has the meaning 
of the velocity jump at the trailing edge, as in a uniform fluid: 

1 dF0 
7(e) = [vl(-c, t)l = - v  de ' (2.3) 

F0(t) is the circulation of the velocity around the wing: 
c c c 

--c --c T/ 

h(~, t) is an additional term owing to the stratification: 

c (,+c)/v 

--c 0 

- - - r  G(~0T)dT] @, 

(2..~) 
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I. 

G(x) = f JI(Y) dy 
Y 

0 

(30 and 31 are Bessel functions and 0 is the tteaviside function). From (2.1) and the nonflow condition on the 
wing we have 

t 
X 

~-- 4h2] d~ "q- 2hw0 / do" / v(~, o) _ + 
0 la  

/ [1. 
f (x ,  t) = u(~,t) ~ - 

X 
tt  

+ v ( t  - o)) dE 
x sin (wo( t -  a) ~/(z - ~  + V ( t - a ) )  2 + 4h 2 (2.6) 

Thus, for the unknown density of the potential v(~, t) we obtain the singular integral equation (2.6), 
relations (2.3)-(2.5) in the wake, and the initial conditions v(~, 0) = vt(~, 0) = 0 for ( E 10. 

3. We consider the question of the asymptotics of the solution for t ~ oo in the case of harmonic 
vibrations of a wing with frequency w, f(x,  t) = f(z)e i•t. For this purpose, we apply the Laplace transform 
in time: 

o o  

vL(~, p) = f e-Ptu(~, t) dt. 
0 

From (2.6) we then have 
c c o o  

z - z ) 2  + 
- o o  - - o o  0 

( ) x sin w 0 a  ~/(x + V~r - -  ~)2 + 4h 2' da = fL(t/,p). (3.1) [(z + Vo"-  ~)2 + 4h213/2 

It was shown in [2] that, for harmonic vibrations of a wing in an unbounded weakly stratified liquid 
(so << 1), steady vibratory motion of the liquid is observed in a coordinate system attached to the wing at 
t ~ oo. A similar fact is true in the presence of a bottom. What follows is a brief proof. We shall change over 
from the singular equation (3.1) and relations (2.2)-(2.5) to a Fredholm integral equation. 

The kernel of the equation is of complicated form and it is not displayed here. In the case of an 
unbounded fluid, the corresponding kernel is presented in [2]. In the presence of a bottom, this equation 
is supplemented by terms that correspond to the reflected wing. The kernel depends on two dimensionless 
parameters: the complex parameter z = pc/V, which is spectral, and the real parameter so = woc/V, which 
is the inverse Froude number for internal waves. The kernel is an analytic function of z in the entire complex 
plane, except for the segment on the imaginary axis [-/so,/so]. 

Let h be arbitrary but fixed. It follows from the general theory [5] that the Fredholm equation is 
uniquely solvable throughout the complex plane z, except, possibly, for a countable number of poles of the 
resolvent. We shall show that the resolvent has no poles in the right-hand half-plane. We consider the solution 
of this equation and perform an inverse Laplace transformation. Since perturbed flow does not occur at t < 0. 
there are no poles in the right-hand half-plane of the resolvent. We shall show that the resolvent has no 
poles on the imaginary axis as well. For z = O(so), the kernel in the leading order as So ~ 0 (the principal 
part of the kernel) corresponds to steady motion of a wing in a uniform fluid near the bottom [1]. After the 
principal part of the kernel is inverted, we obtain a Fredholm equation with the operator I + Tl(z, so), where 
[[TII[ = O(so). Hence, Tl is a compressing operator, and the solution is unique. For z >> so, the principal 
part of the kernel corresponds to unsteady motion of a wing in a uniform fluid near the bottom. Inverting the 
principal part of the kernel, we again obtain a compressing operator. 

Thus, for small so and Re z /> 0, the problem has a unique solution, and the poles of the resolvent 
can lie only in the left-hand half-plane. As so grows, the poles (if they were in the left half-plane) carl. 
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generally speaking, approach the imaginary axis. New poles can appear only on the boundary of the domain 
of analyticity of the kernel, i.e., on the segment [-/so, iso]. Since the right-hand part has a pole for p = i~,. 
the solution also has a pole at this point. Next, writing the Bromwich integral, in accordance with the residue 
theorem we obtain a harmonic solution for t --. co. The statement is proved. 

We introduce dimensionless coordinates ~ and r/referred to the half-chord of the wing c: 

= xl , '! = y l c .  

We define the functions m.(~) = vL(~,iw), f.(~) = fL(c~,iw) and the dimensionless parameters h' = h/c 
and 3 = wc/V, i.e. the Strouhal number (the primes will be omitted). We then obtain the singular integral 
equation 

1 1 

J Ze.(~) [ ,  1 ( ~ - - ~ - +  4h2 ] d~ -[- 2h3o / ae.(~)d~ 
- - O O  - - O O  

OO 

xJe- i "s in(sor  . 2h ) ( ~ - r  +r) 
0 \ ~/(~ -- ~ + r) 2 + 4h2 [(~ -- ~ + r)2 + 4h213/2 

Here the density in the wake is as follows: 

d r  = f . f f ) .  (3.2) 

1 1+r 

~e,(~) = -isoJo(so(~ + X))e is('+1' f ze,(r +so / e-iS'G(socr)da] d~ 
- 1  o 

z I + r  

--302 / ~.(r -~-80 / Jl(3o(~-~-o'))G(3oo')do']d~. (3.3) 
- 1  0 

4. Equation (3.2) together with relation (3.3) was solved numerically by the discrete-vortex method 
[6] using the Belotserkovskii scheme: a vortex in the 1/4 segment and a control point in the 3/4 segment from 
the leading edge. 

After we find the density of the potential ~e,((), the amplitudes of the nonstationary forces and the 
moment are determined by the following formulas [2]: 

1 1 1 

-1 -1 -1 
~+1 I 1+~ 

x / e-iSCG(so~)d~ + isso / ae,(~)d~ / (1 +~-~)e- iSCG(so()d~] ,  
0 - 1  0 

1 1 1 is 
-1 -1 -1 

~+1 Z Z 1 

x /(~-r162162 + isso J ~d~/d~/a~.(T1)ei"r162 
0 - 1  ~ r 

The integral 

e-iS" sin sot dr (4.1) 
0 + T - 0  + 4h2 + T - r + 4h213/2 

for s ~ 0 was divided into two segments [0, rn] and [rn, co]. This integral was calculated on the segment 
[0, rn] according to the scheme of rectangles with a point at the middle of it and by integration by parts on 
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Fig. 2. Dependence of the modulus (a) and phase (b) of the unsteady force and 
moment on the distance to the bottom h for s = 0.2 and so = 0.5. 
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Fig. 3. Dependence of the force and moment moduli on the distance to the bottom 
h for so = 1 and various values of s. 
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Fig. 4. Dependence of the force and moment moduli on the Strouhal number s for 
various distances of the wing from the bottom and various Froude numbers. 
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the segment [rn, oo]. For s = 0, we made the following substitution: a = 2hr/k/(  ~ + r - ~)2 + 4h 2. Here the 
domain of integration becomes finite (0 < a < ~rmax): 

f 2h for ( ( - r  

O'max = ] ~/4h 2 + (~ _ ~)2 for (~ - ~') < 0. 

Integral (4.1) determines the interaction of the vibrations of the wing and the reflected internal waves. 
Numerical computations showed that, for s < so, the integral behaves nonmonotonically relative to h. The 
unsteady forces and the moments acting on the wing behave correspondingly. 

Computations were performed for two cases, namely, bending and torsional vibrations of the wing. 
Here the displacement of the wing was specified in the form 

Wl (x, t) = yoe i~ w2(z, t) -- aoze i~t, 

where yo and ao are the dimensionless amplitudes of vibrations of the wing. We introduce the dimensionless 
force Cy and moment Cm coefficients, which are related to Y~. and Mi. by the relations 

~ .  = 2rpoV2caiCy, Mi. = 2rpoV2c2aiCm, i = 1, 2. 

Here the subscript i indicates the type of vibration of the wing, and ai  are the normalization coefficients: 
al = isyo and a2 = a0. 

Figure 2 shows the moduli and phases of the dimensionless unsteady forces Cy and moments Cm for 
bending vibrations of the wing for s = 0.2 and so = 0.5. In this figure and the subsequent ones, the solid 
curves refer to C~ and cry and the dashed curves refer to Crn and a,n. The corresponding curves for torsional 
vibrations of the wing differ little and, therefore, we omit them. 

Figure 3 shows force and moment moduli for so = 1 [(a) refers to steady motion of the wing at a small 
angle of attack cr0, i.e., s = 0, and (b) and (c) refer to s = 0.5 and 0.8 for bending and torsional vibrations 
of the wing (curves 1 and 2)]. It follows from the results obtained that the oscillations of the amplitude of 
harmonic loads relative to h depend on the relation between s and so. When s approaches so, the curves 
becomes increasingly flat, and they behave monotonically for s > so, because there are no internal waves, and 
the solution becomes an asymptote very rapidly. 

The force and moment  moduli versus the Strouhal number are shown in Fig. 4 for various values of h. 
For s = so, the flow regimes change: internal waves occur for s < so and these waves are absent for s > so. 
The curves are not smooth for s = so. It is seen from Fig. 4 that,  for s > so, the solution behaves in the 
same manner for various values of h, since it acquires the asymptotic character very rapidly. Meanwhile, for 
s < so, the solution becomes oscillating increasingly rapidly with increasing h. A similarity to acoustics is 
observed: the larger the width of the channel, the shorter the wavelength and the larger the number of crests 
and troughs. As in acoustics, it is possible that eigenvalues of the homogeneous problem are present in the 
left half-plane for s < so. 
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